

DATA SHEET HSCDTD015A

1-7, YUKIGAYA-OTSUKA-MACHI, OTA-KU, TOKYO, 145-8501, JAPAN PHONE +81(3)3726-1211 FAX +81(3)3728-1741 NAGAOKA R&D CENTER NAGAUNA R&U CENTER 1-3-5, HIGASHITAKAMI-MACHI, NAGAOKA-CITY, NIIGATA-PREF, 940-0006, JAPAN PHONE +81 258-24-4111 FAX +81 258-24-4110

This specification is subject to change without notice.

HSCDTD015A

2 / 36 Rev1.1 Nov./28/2025

History of revision

Datasheet Rev.	Date	Page	Note
1.0	27.Jun.2025		First edition
		P32	Add recommended soldering conditions.
1.1	28.Nov.2025	F 32	Add Reel and Tape informations.
1.1	120.1100.2023	P33	Add Reel and Tape informations.

HSCDTD015A

3 / 36 Rev1.1 Nov./28/2025

OVERVIEW

HSCDTD series is three axis terrestrial magnetism sensor of the digital output.

A high sensitivity magnetic sensor that detects the terrestrial magnetism element is mounted.

It provides with the drive circuit, the signal processing circuit, and the serial interface.

FEATURES

- 3-Axis magnetic sensor with (XYZ) 0.075 [μT/LSB] resolution
- Output, x, y, z axis magnetic field strength.
- Serial interface

I2C slave interface (SS, FS, FS+) PhilipsI2C revision .2.1 and NXP UM10204 I2C-bus specifications and user manual Rev.03-19 June 2007 is supported.

- -16 pin, FLGA package
- Package size : 1.6 × 1.6 x t0.64mm (Maximum size)
- Low current consumption
- Lead free, RoHS instruction, Halogen free conforming
- Function Initialization Function (Power on reset)
 - Functional Mode Standby Mode

Continuous Measurement Mode (CMM) (Data Rate 10 / 50 / 100 / 200Hz Selectable)

One-shot Mode

- Temperature Compensation Function
- Data Ready Function
- Interrupt Function
- FIFO Function

- Supply Voltage - Analog 1.6 to 2.0 V

- Digital 1.14 to 2.0 V

- Operating Temperature -40 to +85°C

HSCDTD015A

4 / 36 Rev1.1 Nov./28/2025

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum voltage supply(AVDD/VDDIO)	Vmax	-0.5		3.6	V
Storage Temperature	Tstg	-40		+125	°C
Electrostatic discharge protection @ HBM		1500			V
Electrostatic discharge protection @ CDM		350			V

ELECTRICAL CHARACTERISTICS

Temperature condition: 25 degC

remperature condition: 25 degC						
Characteristics		Symbol	Min.	Тур.	Max.	Unit
Supply Voltage AVDD		AVDD	1.6		2.0	V
Supply Voltage DVDD		VDDIO	1.14		2.0	V
Standby Mode current		IDAstb		19	40	μΑ
One shot mode current		IDAosm		21	45	μΑ
CMM	TAP=6bit	IDAlp_avg		84		μΑ
Average current consumptio	n TAP=7bit			121		
@ 50Hz±10%	TAP=8bit			196		
@AVDD=1.8V	TAP=9bit			344		
CMM	TAP=6bit	IDAlp_avg		146		μΑ
Average current consumptio	n TAP=7bit			222		
@ 100Hz±10%	TAP=8bit			369		
@AVDD=1.8V	TAP=9bit			666		
CMM	TAP=6bit	IDAlp_avg		273		μA
Average current consumptio	n TAP=7bit			420		
@ 200Hz±10%	TAP=8bit			717]	
@AVDD=1.8V	TAP=9bit			1311		
Digital IO Low Level Input Vo	oltage	VIL	-0.5		VDDIO*0.3	V
Digital IO High Level Input V	oltage	VIH	VDDIO*0.7		VDDIO+0.5	V
Digital IO Low Level Output	Voltage	VOL	-0.5		VDDIO*0.3	V
Digital IO High Level Output	Voltage	VOH	VDDIO*0.7		VDDIO	V
I2C Clock Frequency	Standard/Fast+	I2Cffs	0.1	0.4	1	MHz
SPI Clock Frequency @ VDI	DIO=1.8V	SPIf		12	20	MHz
TRG pull-down resistance	VDDIO = 1.14 V	R_{TRG}	230	373	570	kohm
VDDIO = 1.8 V			70	114	180	
		50	94	150		
TRG input pulse width (activ	PW_{TRG}	20			µsec	
			167	266	401	kohm
(Open-drain setting only)	VDDIO = 1.8 V		64	98	145	
	VDDIO = 2.0 V		55	83	122	

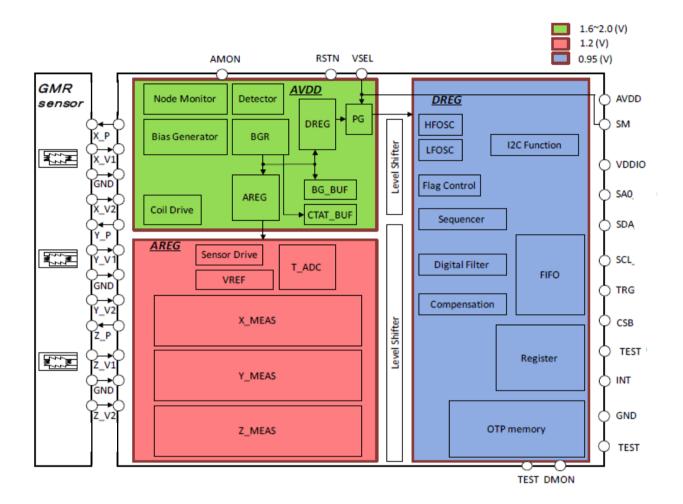
HSCDTD015A

5 / 36 Rev1.1 Nov./28/2025

MAGNETIC CHARACTERISTICS

Temperature condition: 25 degC

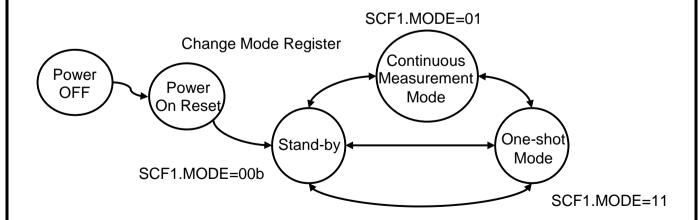
Characteristics Symbol Min. Typ. Max. Unit			rem	perature co	ondition: 2	o dego		
Full Scale Range, Magnetic field measuement Smag -2.4 +2.4 mT	Characteristics				Min.	Тур.	Max.	
Sensitivity Error Smag,err -2.5 C.5 %					-40		+85	
Resolution	Full Scale Range	e, Magnetic field mea	asuement	FSmag	-2.4		+2.4	
Temperature Resolution	Sensitivity Erro	r		_	-2.5		2.5	%
RMS Noise	Resolution				0.073	0.075	0.077	
CMM	Temperature R	esolution		TPres		0.03125		°C/LSB
TAP=7bit Z 0.10 0.17(%1) 0.17(%1) 0.08 0.09	RMS Noise	CMM		Nmag,rms				μΤ
CMM						0.10	0.17(※1)	
CMM		TAF = TOIL	Z			0.11	0.17(※1)	
TAP=8bit Z 0.09		CMM				0.08		
CMM						0.09		
CMM		TAF -ODIL				0.10		
TAP=9bit Z		CNANA				0.07		
Output Data Rate ODR=00 ODR=00 ODR=01 ODR=01 ODR=10 ODR=10 ODR=11 ODR=10 ODR=11 ODR=10 ODR=11 ODR=10 ODR=11 ODR=10 ODR=11 MTIpm ODR=10 ODR=11						0.08		
ODR=01 ODR=10 ODR=10 ODR=11 100 S0 S0 S0 S0 S0 S0 S0 Sensitivity Error Mismatch between axes Hz Hz 100 S0 S		TAP=90IL	Z			0.09		
CMM Meas Time TAP=6bit TAP=8bit TAP=9bit TAP=9bit TAP=6bit TA	Output Data Ra	ate	ODR=00	ODRmag		200		
ODR=10 ODR=11 S0 10			ODR=01			100		U→
CMM Meas Time TAP=6bit TAP=7bit TAP=8bit TAP=8bit TAP=9bit MTIpm 0.310 0.502 0.886 0.8			ODR=10			50		ПZ
TAP=7bit TAP=8bit TAP=8bit TAP=9bit TAP=9bit TAP=9bit TAP=5bit TAP=6bit			ODR=11			10		
TAP=8bit TAP=8bit TAP=9bit 0.886 msec Temperature Measurement Time TAP=5bit TAP=6bit 126 μsec Software Reset Time Tsrst 165 180 μsec Zero-field Offset Variation over Temperature ΔOSmag,t -0.1 0.1 μT/°C Sensitivity Error over Temperature Smag,err,t 0.0 2.5 % Sensitivity Error Mismatch between axes Smag,err,mis -1.0 1.0 % Nonlinearity Lmag 0.0 2.0 %	CMM Meas Tin	ne	TAP=6bit	MTlpm		0.310		
TAP=8bit TAP=9bit 0.886 TAP=9bit TAP=5bit TAP=5bit TAP=6bit 1.654 Temperature Measurement Time TAP=5bit TAP=6bit 126 μsec Software Reset Time Tsrst 165 180 μsec Zero-field Offset Variation over Temperature ΔOSmag,t -0.1 0.1 μT/°C Sensitivity Error over Temperature Smag,err,t 0.0 2.5 % Sensitivity Error Mismatch between axes Smag,err,mis -1.0 1.0 % Nonlinearity Lmag 0.0 2.0 %			TAP=7bit			0.502		maaa
			TAP=8bit			0.886		msec
TAP=6bit TA			TAP=9bit			1.654		
TAP=6bit 174 μsec Software Reset Time Tsrst 165 180 μsec Zero-field Offset Variation over Temperature ΔOSmag,t -0.1 0.1 μT/°C Sensitivity Error over Temperature Smag,err,t 0.0 2.5 % Sensitivity Error Mismatch between axes Smag,err,mis -1.0 1.0 % Nonlinearity Lmag 0.0 2.0 %	Tomporoturo M	loogurament Time	TAP=5bit	MTto		126		µsec
Zero-field Offset Variation over Temperature $\Delta OSmag,t$ -0.1 0.1 $\mu T/^{\circ}C$ Sensitivity Error over Temperature Smag,err,t 0.0 2.5 % Sensitivity Error Mismatch between axes Smag,err,mis -1.0 1.0 % Nonlinearity Lmag 0.0 2.0 %	TAP=6bit			IVIIIS		174		µsec
Sensitivity Error over TemperatureSmag,err,t0.02.5%Sensitivity Error Mismatch between axesSmag,err,mis-1.01.0%NonlinearityLmag0.02.0%	Software Reset Time			Tsrst		165	180	µsec
Sensitivity Error over TemperatureSmag,err,t0.02.5%Sensitivity Error Mismatch between axesSmag,err,mis-1.01.0%NonlinearityLmag0.02.0%	Zero-field Offset Variation over Temperature			∆OSmag,t	-0.1		0.1	μT/°C
Nonlinearity Lmag 0.0 2.0 %					0.0		2.5	%
•				Smag,err,mis	-1.0		1.0	%
Hysteresis @ ±1.2mT Hys 2.0 uT	Nonlinearity			Lmag	0.0		2.0	%
	Hysteresis @ ±	:1.2mT		Hys			2.0	uΤ


^(※1) Noise inspection is performed with TAP=7 bit only and Max value is inspection Spec.

HSCDTD015A

6 / 36 Rev1.1 Nov./28/2025

BLOCK DIAGRAM


HSCDTD015A

7 / 36 Rev1.1 Nov./28/2025

FUNCTIONAL SPECIFICATIONS

Function List

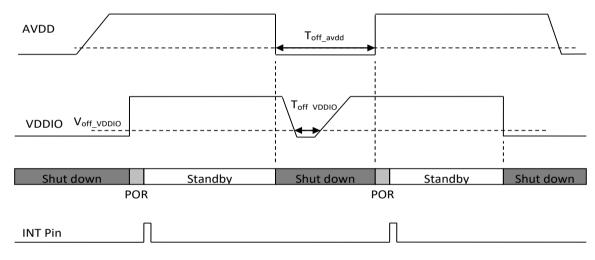
Name	Description
Initialization	Power on reset is performed by turning on the power.
	All circuits and registers are set to default and mode is
	set to Standby Mode automatically by POR.
	Software reset is performed by writing to control register.
	All register except OTP register is set initial value.
Functional Modes	This sensor has Standby Mode and active mode for power control.
	There are 2 states in active mode.
Off mode	The sensor is not active when AVDD or VDDIO is disable.
Standby Mode	Low power waiting state. Standby Mode can access to register.
Active Mode	Change from Standby Mode to active mode by register command
	to Sensor Config1 register.
Continuous Measurement Mode (CMM)	Continuous interval measurement. Interval time depends on ODR setting.
One-shot Mode	External Trigger Measurement / Register Action Measrurement
(OSM)	Measruemet is same as CMM setting
Interrupt Function	Measurement event
Data Ready function	Informs when new measured results are updated.
	It is possible that data ready inform the signal to the DRDY pin when updated output data.
FIFO Threshold function	Informs when FCNT is greater than or equal to FFTH.
FIFO Full function	Informs when all 64 data are stored in the FIFO.
POR event function	Informs when POR is completed.
SRST event function	Informs when SRST is completed.
Temperature Measurement	Retrieve temperature data from internal temperature sensor.
Function	Temperature data is used for internal compensation for output data.
Temperature Compensation Function	Compensate gain and offset in digital circuit by temperature measurement results.

State Machine

HSCDTD015A

8 / 36 Rev1.1 Nov./28/2025

FUNCTIONAL SPECIFICATIONS (Continued)


Initialization

- All internal circuits and all register values are initialized with POR (Power On Reset) after power-on.
- After initialization, the functional mode move to Standby Mode automatically.
- The software reset set by the register command /CCF.SRST=1 makes all register value to defaults.

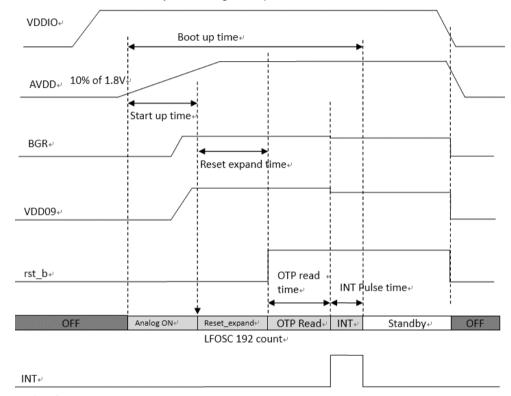
Supply Power Specifications

Supply power sequence

- Supply power sequence for AVDD and VDDIO shall not be limited. However, Ramp Time shall be satisfied 0.01 ~ 3 ms at the 10% ~ 90% range of the voltage.
- Reset is extended for 192 clocks of LFOSC count after detection of AVDD and VDDIO voltage. And then, it shall release the Reset if AVDD voltage and VDDIO are available.
- Supply power sequence read OTP after Reset release, and output pulse signal from INT pin, and then transit to Standby Mode.

Power ON/OFF Sequence

Shut-down specifications


Parameters		Cymbolo	Conditions	С	haracteristic	cs	Units
Parameters		Symbols	Conditions	MIN	TYP	MAX	Offics
AVDD Shut Off vol	age	$V_{\rm off_AVDD}$		0		0.3	V
VDDIO Shut Off vol	tage	$V_{\text{off_VDDIO}}$		0		0.3	V
AVDD Shut Off tir	ne	T_{off_AVDD}		0.1			msec
VDDIO Shut Off ti	me	T_{off_VDDIO}		0.1			msec

FUNCTIONAL SPECIFICATIONS (Continued)

Supply Power Specifications (Continued)

Power operation

- Power Operation detects power line voltage in ASIC after AVDD and VDDIO were supplied, and make LFOSC work, and extend Reset 192 clock.
- Power Operation reads OTP after Reset extension, then transit to Standby Mode. It shall not allow the access by I/F during this operation.

Power On Sequence

Power On Sequence Specifications

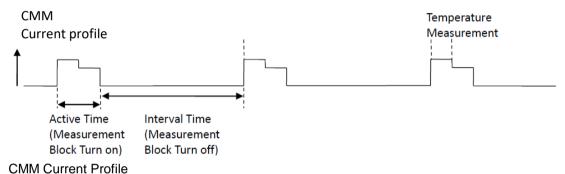
Parameters	Symbolo	Conditions	С	haracteristic	cs	Units
Parameters	Symbols	Conditions	MIN	TYP	MAX	Units
Power rise time	T_{Prise}	10& - 90%	0.01		3	msec
Power fall time	T _{Pfall}	10& - 90%	0.1		3	msec
Start up time	T _{start}	10% to rest release	1.4		2.2	msec
Reset_expander time	T_{rexp}		0.89		1.4	msec
OTP read 64 Byte	T _{OTPread}			100	200	usec
INT pulse time	T _{INT_POR}		148.5	165	181.5	usec
Boot-up time	T _{bootup}	From 10% of 1.8V to Standby			4	msec

FUNCTIONAL SPECIFICATIONS (Continued)

Modes

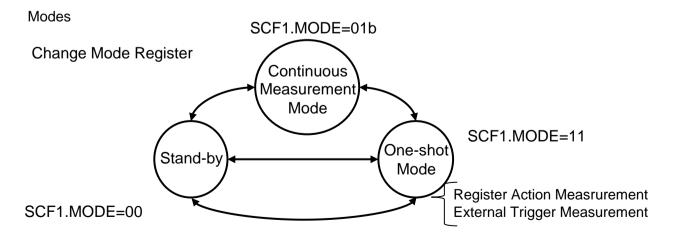
OFF mode

- The sensor is not active when AVDD or VDDIO is disable.


Standby Mode

- After loading the POR (Power On Reset), internal state is moved to Standby Mode automatically.
- Standby Mode is set by the register command /SCF1.MODE=00b.

Active Mode


Continuous Measurement Mode [CMM]

- Continuouse Measurement Mode is set by the register command /SCF1.MODE=01b.
- After the measurement is completed, the measurement circuit is shut down to maintain low current consumption.
- X, Y, Z axis and temperature measurement is simultaneously performed
- Measure automatically according to the set Output Data Rate (ODR).
- Temperature compensation is performed automatically by measurement with a temperature sensor.

One-shot Mode

- One-shot Mode is set by the register command /SCF1.MODE=11b.
- Register Action Measurement is performed by accessing the register /SACT.MES=1b.
- External Trigger Measurement is performed by inputting the pulse into the TRG terminal.
- Measurement setting is the same setting as CMM.

The diagram on mode transfer

HSCDTD015A

11 / 36 Rev1.1 Nov./28/2025

FUNCTIONAL SPECIFICATIONS (Continued)

Register configuration

Register configuration change behavior

- In case of changing register related measurement, the measurement shall be started with new configuration after writing completion.
- In case during measurement, analog circuit shall be reset, and then start measurement with new conditions.
- In case of OneShotMode, measurement shall be ended, and no new measurement shall be started automatically.

Register configuration behavior

Register	bit	Description	Mode	Measure	FIFO	Status	INT pin
CCF	SRST	Software Reset	All	clear	clear	clear	clear
ISO	DRDY	Data Ready	CMM	-	-	-	clear or
	FTHS	FIFO Threshold	CIVIIVI				re-assert
	FFUL	FIFO Full	OSM				
FFCF	FFMD	FFMD=00b :	CMM	-	clear	clear	clear or
		BypassMode , FIFO,	CIVIIVI			FTHS &	re-asser
		/ISTA.FFHR,	OSM			FFUL	
		/ISTA.FFUL Clear					
	FFTH	FIFO Count	CMM	-	-	clear or	clear or
		FCNT>=FFTH: assert				re-assert	re-assert
			OSM				
SCF1	TDIS	TEMP Disable	СММ	clear &	-	-	-
	RES	Resolution Select	CIVIIVI	re-start			
	TAP[1:0]	Mesure TAP	OSM	clear	-	-	-
	ODR[1:0]	Output Data Rate					
	MODE[1:0]	Change CMM	CMM	clear &	-	-	-
			CV1	re-start			
		MODE=11b OSM	OSM	clear	-	-	-
		MODE=00b (Stand-by)	STB	clear	clear	clear	clear

HSCDTD015A

12 / 36 Rev1.1 Nov./28/2025

FUNCTIONAL SPECIFICATIONS (Continued)

FIFO event function (Continued)

FIFO Data

There are 64 count for FIFO and it consists of reserved 8 Bytes and TEMP 2 Bytes and MAG 6Bytes. The reading of FIFO is done by register address 27h.

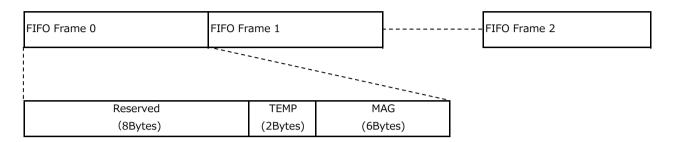


図11: FIFO Frame Description

FIFO frame description

FIFO structure

Number	Posistor Namo		Resister Name Bit information							empty
Number	Resister Mairie	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	епрсу
Byte0										
Byte1										
Byte2										
Byte3	Reserved					_				_
Byte4	Reserveu									_
Byte5										
Byte6										
Byte7										
Byte8	Temperature Data LSB	TEMP[7:0]								7Fh
Byte9	Temperature Data MSB	TEMP[15:8]							7Fh	
Byte10	X Magnetic Data LSB	MAGX[7:0]							7Fh	
Byte11	X Magnetic Data MSB	MSB MAGX[15:8]						7Fh		
Byte12	Y Magnetic Data LSB MAGY[7:0]					7Fh				
Byte13	Y Magnetic Data MSB				MAGY	[15:8]				7Fh
Byte14	Z Magnetic Data LSB	MAGZ[7:0]							7Fh	
Byte15	Z Magnetic Data MSB				MAGZ	[15:8]				7Fh

HSCDTD015A

13 / 36 Rev1.1 Nov./28/2025

FUNCTIONAL SPECIFICATIONS (Continued)

Interrupt function Interrupt Source

INT source list

Туре	bit	Condition	Status bit
ISO.DRDY	1:selected 0:no action	INT is active High when DATA is set in DATA_REG after measurement	ISTA.DRDY
ISO.FTHS	1:selected 0:no action	INT is atctive when FIFO is over FFCF.FFTH FIFO_COUNT = FFTH after measurement - FIFO_COUNT ≧ FFTH after reading FIFO	ISTA.FTHS
ISO.FFUL	1:selected 0:no action	INT is active when FIFO is 64 count when FIFO_COUNT=63 is changed to FIFO_COUNT=64	ISTA.FFUL
POR	Always active	INT is active(pulse) after power on reset	ISTA.POR
CCF.SRST	Always active	INT is active(pulse) after software reset	ISTA.POR

Interrupt Status Clear Event

Interrupt Status Clear Condition

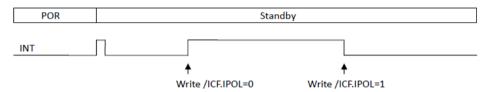
interrupt Otatus	Olcai Condition		
Status bit	Trigger	Clear Condition	Description
ISTA.DRDY	End of Meas	Read / ISTA	Read Status Byte(ADR;25h)
		Write / SCF1.MODE=00b	Change Standby Mode
ISTA.FTHS	FCNT>=FFTH	Read / ISTA	Read Status Byte(ADR;25h)
		Write / SCF1.MODE=00b	Change Standby Mode
		Write / FFCF.FFMD=00b	Change Bypass Mode
ISTA.FFUL	FCNT=63->64	Read / ISTA	Read Status Byte(ADR;25h)
		Write / SCF1.MODE=00b	Change Standby Mode
		Write / FFCF.FFMD=00b	Change Bypass Mode
ISTA.POR	End of POR/SRST	Read / ISTA	Read Status Byte(ADR;25h)

Note) Software reset: All clear, after software reset completion, ISTA.POR is asserted

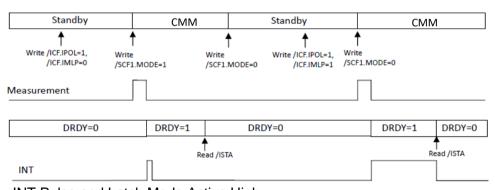
HSCDTD015A

14 / 36 Rev1.1 Nov./28/2025

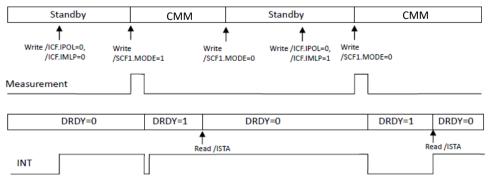
FUNCTIONAL SPECIFICATIONS (Continued)


Interrupt function (Continued)
FIFO Threshold Interrupts (Continued)

Interrupt Pin Behavior


- INT Pin support Pulse Mode and Latch Mode for each interrupt function, it can be controled for each register of /ICF.
- The following table shows each condition.
- In the case of Pulse Mode, it certainly keep inactivate term after the signal activate.
- If /ICF.IPOL=1, INT Pin must Active High. If /ICF.IPOL=0, INT Pin must Active Low.
- If /ICF register was changed in CMM and OSM Mod, the function can NOT be guaranteed. /ICF should be changed in Standby Mode.

Interrupt Pin Configuration

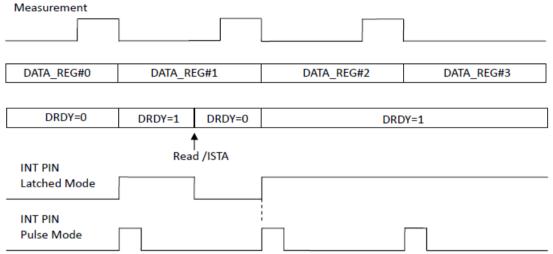

/ICF	Default	Description	bits
IMLP	0	INT Signal Mode	1: Latched Mode
			0 : Pulse Mode
IPPO	1	INT PAD type configuration	1 : Push-Pull
			0 : Open drain
IPOL	1	INT Signal Polarity	1 : Active High
			0 : Active Low

INT polarity control on Standby Mode

INT Pulse and Latch Mode Active High

INT pulse and Latch Mode Active Low

HSCDTD015A


15 / 36 Rev1.1 Nov./28/2025

FUNCTIONAL SPECIFICATIONS (Continued)

Interrupt Function

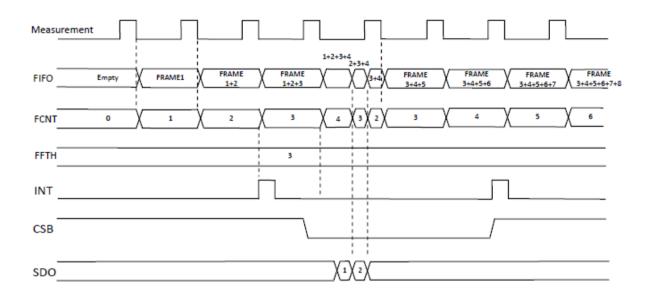
Data ready interrupt (DRDY)

- -This function is used for notice that output data was updated.
- It is possible that data ready inform the signal to the INT pin when updated output data.
- In Pulse Mode, when DATA_REG is updated, the output of the INT terminal is always output.
- In Latched Mode, as long as DRDY is not released by reading $\,$ / ISTA, INT terminal keeps active state.

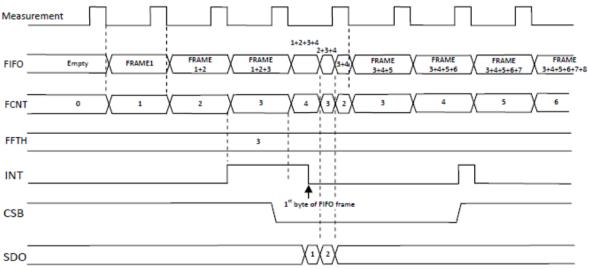
INT standard behavior of DRDY

Interrupt Pin Timing Specifications

INT pin specifications


Parameter	Symbol	С	Units		
		MIN	TYP	MAX	
Interrupt pulse width	INT _{PW}	148.5	165	181.5	usec
Time between interrupt	т	139.5	155	170.5	usec
de-assertion and re-assertion	I int_dta	139.3	133	170.5	usec
De-assertion Latency	Lty _{assert}	0		20	usec

FUNCTIONAL SPECIFICATIONS (Continued)


Interrupt Function (Continued)

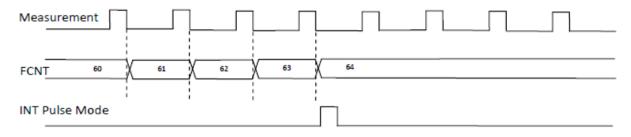
FIFO Threshold Interrupts

- This function is used for notice that FCNT is greater than or equal to FFTH /. ISTA.FTHS = 1.
- If FCNT becomes FFTH or higher again during reading of FIFO data,
- INT signal is outputted from INT terminal at de-assertion of CSB (at the end of Read).

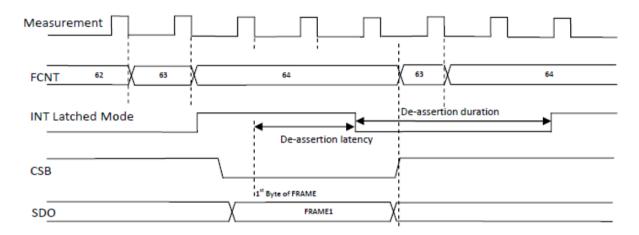
INT pulse mode behavior of FIFO Threshold Event

INT latch mode behavior of FIFO Threshold Event

HSCDTD015A

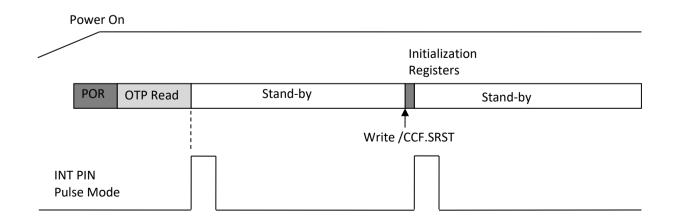

17 / 36 Rev1.1 Nov./28/2025

FUNCTIONAL SPECIFICATIONS (Continued)


Interrupt Function (Continued)

FIFO Full Interrupts

- This function is used for notice that all 64 data are stored in the FIFO.

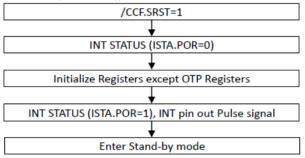

INT behavior of FIFO Full Event

INT Latched Mode behavior of FIFO Full Event

POR Interrupts / SRST Interrupts

- This function is used for notice that power-on OTP Reading or Software Reset is completed.
- Signal from INT terminal with Pulse and set / ISTA.POR = 1.

HSCDTD015A

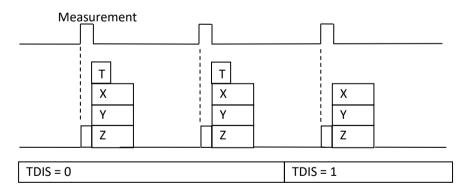

18 / 36 Rev1.1 Nov./28/2025

FUNCTIONAL SPECIFICATIONS (Continued)

Interrupt Function (Continued)

Software Reset

- Software reset is executed by /CCF.SRST=1.
- If software reset is executed in measurement, the measurement stops immidiately and reset is executed.
- The registers get to be default value by software reset except OTP.
- The pulse signal of reset completion is generated from INT Pin after complesion of software reset.



Software Reset Flow

Temperature Measurement

- The temperature measurement will be executed automatically together with magnetometer measurement in CMM & OSM mode, provided that SCF1/TDIS=0.
- Temperature only measurement can be executed only in TMES of One-shot Mode.

 And only the temperature data is updated to the FIFO, and MAGX, MAGY, MAGZ are all 7 Fh.
- When / SCF1.TDIS = 1, temperature measurement does not performed in each mode.
- When / SCF1.TDIS = 0, temperature measurement is performed simultaneously with magnetic field measurement in all modes.

TDIS (Temp Measurement Disable) Function

HSCDTD015A

19 / 36 Rev1.1 Nov./28/2025

INTERFACE SPECIFICATIONS 12C

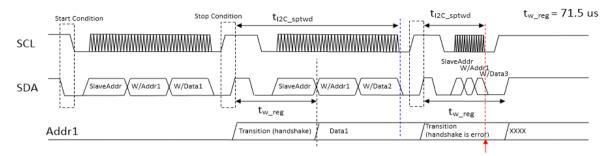
Interface specifications

OP53.IFS	I/F	SA0	CSB	Description
1	I2C	Input	Output(High)	2 wire I2C, Standard / Fast / Fast Plus

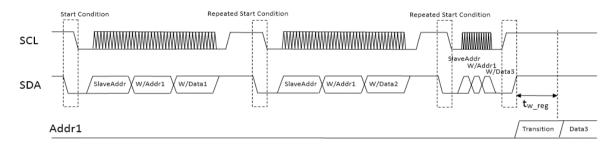
Register write constraints

- 71.5us interval of writing into the same configuration register
- In case of I2C, it shall be specified the time(ti2c_sptwd) from StopCondition to data write of next communication.
- To the same way, writing data at the latest communication shall be written to specified register address untill StopCondition enabled in case of the communication was continued by Restart(Repeated start)Condition.

Specific Register for Configuration


Addr	Symbol	Name	Description
15h	ISO	INT Source	Interrupt Source Setting
16h	FFCF	FIFO Config	FIFO mode, FIFO threshold
17h	SCF1	Sensor Config1	TAP, Mode, ODR

Interval time


Parameter	Symbol	Condition	Characteristics			Units
			MIN	TYP	MAX	
Interval time from Stop	t _{I2C sptwd}	All Condition	71.5			us
Condition to Write Data of						
same address						

INTERFACE SPECIFICATIONS I2C (Continued)

Register write constraints (Continued)

I²C Specific Register Write Constraints

I²C Repeated Start Condition Write to Same Register

Comminucation Frequency Constraints

- There is a possibility to lose the data under 1kHz for I2C, since next measurement data update is done during data reading.

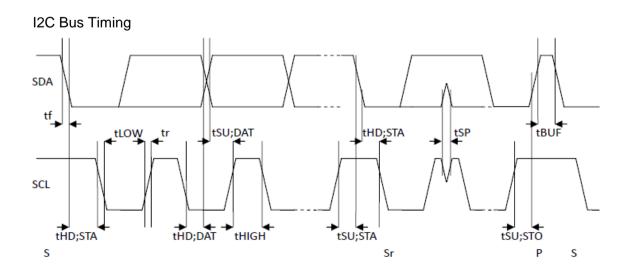
Comminucation Frequency Constraints

I/F	ODR	Data Period	Constraints	Min Frequency
I ² C	100Hz	10ms	5 SCL < 10ms	0.5kHz
I ² C	200Hz	5ms	5 SCL < 5ms	1kHz

HSCDTD015A

21 / 36 Rev1.1 Nov./28/2025

INTERFACE SPECIFICATIONS I2C (Continued)


12C SLAVE INTERFACE

- Conformable to Philips I2C-Bus Specifications Version 2.1 and NXP UM10204 I2C-bus specification and user manual Rev.03-19 June 2007
- Slave address is SA0=0 : 0E(Hex), SA0=1 : 0F(Hex)
- Support Standard mode, Fast mode and Fast mode Plus.
- It is seemless change from Fast mode to High speed mode to use the master code (00001XXX)

I2C Characteristics

I2C Bus Timing1

Parameters	Symbol	Standar	d Mode	Fastr	node	Fast mo	de Plus	Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
SCL clock frequency	f _{SCL}	0	100	0	400	0	1000	kHz
Hold time (re)start condition	t _{HD;STA}	4.0	-	0.6	-	0.26	-	us
Low period of the SCL clock	t _{LOW}	4.7	-	1.3	-	0.5	-	us
High period of the SCL clock	t _{HIGH}	4	-	0.6	-	0.26	-	us
Set-up time for (re)start		4.7	_	0.6		0.26		
condition	t _{su;sta}	4.7	-	0.6	-	0.26	-	us
Data hold time	t _{HD;DAT}	0	-	0	-	0	=	us
Data set-up time	t _{SU;DAT}	250	-	100	-	50	-	ns
Rise time of SDA and SCL	t _r	600	1000	180	300	72	120	ns
Fall time of SDA and SCL	t _f	6.5	106.5	6.5	300	6.5	81.5	ns
Set-up time for stop condition	t _{SU;STO}	4.0	-	0.6	-	0.26	-	us
Bus free time between a stop and start condition	t _{BUF}	4.7	-	1.3	-	0.5	1	us
Capcacitive load for SDA/SCL	C _b	-	400	-	400	-	300	pF
Data valid time	t _{VD;DAT}	0.07	3.45	0.07	0.9	0.07	0.45	us
Data valid acknowledge time	t _{VD;ACK}	0.07	3.45	0.07	0.9	0.07	0.45	us
Noise margin at the low level	VnL	0.1*VDDIO	-	0.1*VDDIO	-	0.1*VDDIO	-	V
Noise margin at the high level	VnH	0.2*VDDIO	-	0.2*VDDIO	-	0.2*VDDIO	-	V
Hysteresis input voltage VDDIO < 2V	Vhys	0.1*VDDIO	-	0.1*VDDIO	-	0.1*VDDIO	-	V
Noise suppression pulse width	tsp	50	-	50	-	50	-	ns
I2C Glitch Suppression	I^2C_{GS}	150	200	150	200	150	200	mV

HSCDTD015A

22 / 36 Rev1.1 Nov./28/2025

INTERFACE SPECIFICATIONS I2C (Continued) I2C SLAVE INTERFACE (Continued)

- Data transfers follow the combined format with 7-bit addressing of I2C interface.
- Data is transferred with the most significant bit (MSB) first and little endian.
- Auto-increment of previous accessed register address is available when the internal register address is written during the first data byte. Data then can be transferred continuously.

Bus protocol definitions

S: Start condition

SAD+W: Slave Address + write bit SAD+R: Slave Address + read bit

SAD+R/W:Slave Address + read or write bit

SA: Slave Acknoledge

ADR: Register Address(2nd byte)
Sr: Repeat Start condition
A: (Master) Acknowledge
/A: (Master) Non-Acknowledge

DATA: Data(load)
P: Stop condition

M-code: Master code (00001XXX)

Read Formats

One Byte Read

Clause CA CA	Master	S	SAD+W	ADR		Р
SA SA	Slave				SA	

ĺ	Master	S	SAD+R			/A	Р
	Slave			SA	DATA		

One Byte Read with repeat start condition

Master	S	SAD+W		ADR		Sr	SAD+R			/A	Р
Slave			SA		SA			SA	DATA		

Multiple Bytes Read

Master	S	SAD+W		ADR		Р
Slave			SA		SA	

Master	S	SAD+R			Α		Α		/A	Р
Slave			SA	DATA		DATA		DATA		

Multiple Bytes Read with repeat start condition

Master	S	SAD+W		ADR		Sr	SAD+R			Α
Slave			SA		SA			SA	DATA	

	Α		Α		/A	Р
DATA		DATA		DATA		

I²C Standard / Fast / Fast Mode plus read communication protocol

Write Format

One Byte Write

Master	S	SAD+W		ADR		DATA		P	
Slave			SA		SA		SA		

Multiple Bytes Write

Master	S	SAD+W		ADR		DATA		DATA		Р
Slave			SA		SA		SA		SA	

HSCDTD015A

23 / 36 Rev1.1 Nov./28/2025

REGISTER DESCRIPTIONS

Supplier ID Register

Address: 00h, "Supplier ID"

Addess	bit	Symbol	R/W	Init	Description
00h	7:0	SID	R	49h	Supplier ID from customer

Chip ID Register

Address: 01h, "Chip ID"

Addess	bit	Symbol	R/W	Init	Description
01h	7:0	CPID	R	18h	Chip ID from customer

Revision ID Register

Address: 02h, "Revision ID"

Addess	bit	Symbol	R/W	Init	Description
02h	7:0	RVID	R	01h	Revision ID from ALSPALPINE

Chip Config Register

Address: 11h, "Chip Config"(CCF)

Address	bit	Symbol	R/W	Init	Description
11h	7:5	RSV	R	0h	Reserved
	4	SPIM	R/W	SPIV	SPIModeSelection
	3:1	RSV	R	0h	Reserved
	0	SRST	R/W	0h	Software Reset
					1 : Enable Reset
					0: Normal
					After Software Reset completed, automatically return 0.

Interrupt Config Register

Address: 14h, "Interrupt Config"(ICF)

Address	bit	Symbol	R/W	Init	Description
14h	7:3	RSV	R	00h	Reserved
	2	IMLP	R/W	0b	Intterupt Mode
					1 : Latched Mode
					0 : Pulsed Mode
	1	IPPO	R/W	1b	Drive Circuit of INT pin
					1: Push-Pull
					0 : Open drain
	0	IPOL	R/W	1b	Interrupt Polarity
					1 : Active High
					0 : Active Low

HSCDTD015A

24 / 36 Rev1.1 Nov./28/2025

REGISTER DESCRIPTIONS (Continued)

Interrupt Source Register

Address: 15h, "Interrupt Source"(ISO)

	,		(-	,	
Address	bit	Symbol	R/W	Init	Description
15h	7:4	RSV	R	00h	Reserved
	3	DRDY	R/W	0b	Interrupt Enable for DRDY signal
					1: DRDY Enable
					0 : DRDY Disable
	2	FTHS	R/W	0b	Interrupt Enable for FIFO Threshold
					1: FIFO Threshlod Enable
					0 : FIFO Threshold Disable
	1	FFUL	R/W	0b	Interrupt Enable for FIFO FULL
					1: FIFO Full Enable
					0 : FIFO Full Disable
	0	RSV	R	0b	Reserved

FIFO Config Register

Address: 16h, "FIFO Config"(FFCF)

Address	bit	Symbol	R/W	Init	Description
16h	7:6	FFMD	R/W	00b	FIFO Mode Control
					00 : Bypass Mode
					01 : Stream-to-FIFO Mode
					10 : STOP-on-FULL Mode
					11 : Bypass Mode
	5:0	FFTH	R/W	00h	FIFO Threshold
					0x00 : Disable the FIFO threshold
					0x3F: 63 frames

Sensor Config Register

Address: 17h, "Sensor Config"(SCF1)

Addie	55 . I <i>I</i> II,	Sensor	Corning	(SCF1)	
Addess	bit	Symbol	R/W	Init	Description
17h	7	TDIS	R/W	0b	TEMP measurement disable
					1: TEMP measurement disable
					0: TEMP measurement is performed with CMM or OSM
	6	RES	R	0b	Resolution Change
					1: 0.0375uT/LSB output Range is +-1.2mT
					0: 0.075uT/LSB output Range is +-2.4mT
	5:4	TAP	R/W	10b	Measurement TAP option for CMM
					00: 6bit TAP(Ultra Low Power setting)
					01: 7bit TAP(Low Power setting)
					10: 8bit TAP(Default setting)
					11: 9bit TAP(Low Noise setting)
	3:2	MODE	R/W	00b	Measurement Mode Selection
					00: Standby Mode
					01: Continuous Measurement Mode(CMM)
					10: Reserve
					11: One-Shot Mode(OSM)
	1:0	ODR	R/W	00b	Output Data Rate
					00: 200Hz
					01: 100Hz
					10: 50Hz
					11: 10Hz

HSCDTD015A

25 / 36 Rev1.1 Nov./28/2025

REGISTER DESCRIPTIONS (Continued)

TEMP Measurement Register

Address: 1Dh to 1Eh, "TEMP Measurement Data" (TEMP)

Address	bit	Symbol	R/W	Init	Description
1Dh	7:0	TEMP	R	7Fh	TEMP data LSB
					TEMP[7:0]
1Eh	7:0	TEMP	R	7Fh	TEMP data MSB
					TEMP[15:8]
					TEMP[15:0] 16bit signed value
					-40 degC : FB00h (-1280d)
					25 degC : 0320h (800d)
					85 degC : 0AA0h (2720d)
					TEMP internal initial value is 0320h (800d) = 25 degC for compensation.
					TEMP sensor slope is 32LSB/degC.

Address: 1Fh to 24h, "Magnetometer Measurement Data" (MAGX, MAGY, MAGZ) GMR Measurement Output Register

- 16bit integer and 7FFFh (+32767d) ~ 8000h (-32768d).

Address	bit	Symbol	R/W	Init	Description
1Fh	7:0	MAGX	R	7Fh	Magnetometer X axis measreuemnt data LSB MAGX[7:0]
20h	7:0	MAGX	R	7Fh	Magnetometer X axis measreuemnt data MSB MAGX[15:8]
21h	7:0	MAGY	R	7Fh	Magnetometer Y axis measreuemnt data LSB MAGY[7:0]
22h	7:0	MAGY	R	7Fh	Magnetometer Y axis measreuemnt data MSB MAGY[15:8]
23h	7:0	MAGZ	R	7Fh	Magnetometer Z axis measreuemnt data LSB MAGZ[7:0]
24h	7:0	MAGZ	R	7Fh	Magnetometer Z axis measreuemnt data MSB MAGZ[15:8]

Interrupt Status Register

Address: 25h, "Interrupt Status" (ISTA)

, , , , , , ,	,	micomape	olalao (,					
Address	bit	Symbol	R/W	Init	Description					
25h	7:5	RSV	R	0b	Reserved					
	4	POR	R	0b	POR complete and Software reset completed indicator					
					1 : completed					
					0 : not complete					
	3	DRDY	R	0b	Data Ready indicator					
					1 : Active					
					0 : Inactive					
	2	FTHS	R	0b	0b FIFO Threshold indicator					
					FCNT >= FTHS					
					1 : Active					
					0 : Inactive					
	1	FFUL	R	0b	FIFO Full indicator					
					FCNT = 64					
					1 : Active					
					0 : Inactive					
	0	RSV	R	0b	Reserved					

Note) The indicators are clear on read register

HSCDTD015A

26 / 36 Rev1.1 Nov./28/2025

REGISTER DESCRIPTIONS (Continued)

FIFO Register

Address: 26h, "FIFO Count" (FCNT)

Address	bit	Symbol	R/W	Init	Description				
26h	7:0	FCNT	R	00h	The count number of FIFO data store				
					00h : empty				
					3Fh: 63 frames				
					40h : 64 frames (FIFO full)				

Address: 27h, "FIFO Data Register"(FOUT)

Address	Bit	Symbol	R/W	Init	Description
27h	7:0	FOUT	R	7Fh	FIFO data output register address
					FIFO frame is composed 16 byte

Frame structure

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Reserved						Temp Magnetometer									
-						TEMP	TEMP MAGX MAGY					MAGZ	-		

Byte	Bit	Symbol	R/W	Init	Description
1	7:0	REV	R	-	Reserved byte
2	7:0	REV	R	-	Reserved byte
3	7:0	REV	R	-	Reserved byte
4	7:0	REV	R	-	Reserved byte
5	7:0	REV	R	-	Reserved byte
6	7:0	REV	R	-	Reserved byte
7	7:0	REV	R	-	Reserved byte
8	7:0	TEMP	R	7Fh	Temp measurement data low byte, if empty, output is 7Fh
9	15:8	TEMP	R	7Fh	Temp measurement data high byte, if empty, output is 7Fh
10	7:0	MAGX	R	7Fh	Mag X measurement data low byte, if empty, output is 7Fh
11	15:8	MAGX	R	7Fh	Mag X measurement data high byte, if empty, output is 7Fh
12	7:0	MAGY	R	7Fh	Mag Y measurement data low byte, if empty, output is 7Fh
13	15:8	MAGY	R	7Fh	Mag Y measurement data high byte, if empty, output is 7Fh
14	7:0	MAGZ	R	7Fh	Mag Z Measurement data low byte, if empty, output is 7Fh
15	15:8	MAGZ	R	7Fh	Mag Z measurement data high byte, if empty, output is 7Fh

HSCDTD015A

27 / 36 Rev1.1 Nov./28/2025

REGISTER DESCRIPTIONS (Continued)

Sensor Action Register

'Address: 28h, "Sensor Action" (SACT)

Address	Lite	Consideral	D AM	1 14	Description
Address	bit	Symbol	R/W	Init	Description
28h	7:2	RSV	R	00h	Reserved
	1	MES	R/W	0b	Magnetometer measurement. This function is available only One-Shot Mode. 1: Performe Magnetmeter measurement. After measurement, this bit is returned 0 automatically. 0: No action
	0	TMES	R/W	0b	TEMP measurement. This function is available only One-Shot Mode. 1 : Performe Temperature measurement. After measurement, this bit is returned 0 automatically. 0 : No action

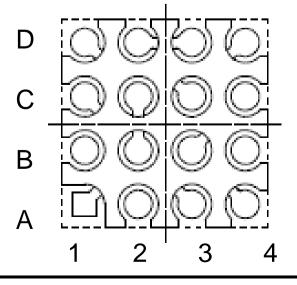
HSCDTD015A

28 / 36 Rev1.1 Nov./28/2025

REGISTER DEFINITIONS

- Register addresses and definitions are as follows.
- Sensor output values are signed integer (2's compliment) presentation and little Endian order.

Addr	R/W	Full Name	Symbol				Bit I	Мар				Init
ess	17/77	i dii Name	Symbol	D7	D6	D5	D4	D3	D2	D1	D0	11111
00h	R	Supplier ID	SID	0	1	0	0	1	0	0	1	49h
01h	R	Chip ID	CPID	0	0	0	1	1	0	0	0	18h
02h	R	Revision ID	RVID	0	0	0	0	0	0	0	1	01h
03h					-	-	-	-	-	-	-	
~	R	Reserved										-
10h												
11h	RW	Chip Config	CCF				SPIM				SRST	00h
12h	R	Reserved										-
13h	R	ikeserved										_
14h	RW	INT Config	ICF						IMLP	IPPO	IPOL	03h
15h	RW	INT Source	ISO					DRDY	FTHS	FFUL		00h
16h	RW	SFIFO Config	FFCF	FFMI	MD[1:0] [5:0]FFTH						00h	
17h	RW	Sensor Config1	SCF1	TDIS RES TAP[1:0] MODE[1:0] ODR[1:0]					R[1:0]	00h		
18h	R	Reserved										-
19h	R	ikeserved										_
1Ah	R	Reserved Config1	RRG1									00h
1Bh	R	Reserved Config2	RRG2									00h
1Ch	R	Reserved Config3	RRG3									00h
1Dh	R	Temp Data LSB	TEMP				TEM	P[7:0]				7Fh
1Eh	R	Temp Data MSB	TEMP				TEMF	P[15:8]				7Fh
1Fh	R	Mag X LSB	MAGX				MAG	X[7:0]				7Fh
20h	R	Mag X MSB	MAGX				MAG	([15:8]				7Fh
21h	R	Mag Y LSB	MAGY				MAG	Y[7:0]				7Fh
22h	R	Mag Y MSB	MAGY				MAG	/[15:8]				7Fh
23h	R	Mag Z LSB	MAGZ				MAG	Z[7:0]				7Fh
24h	R	Mag Z MSB	MAGZ				MAGZ	Z[15:8]				7Fh
25h	R	INT Status	ISTA				POR	DRDY	FTHS	FFUL		00h
26h	R	FIFO Count	FCNT				F	CNT[6:	0]			00h
27h	R	FIFO Data Reg	FOUT			F	FIFO ou	tput po	rt			7Fh
28h	RW	Sensor Action	SACT							MES	TMES	00h

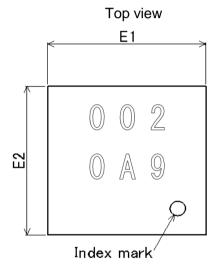

HSCDTD015A

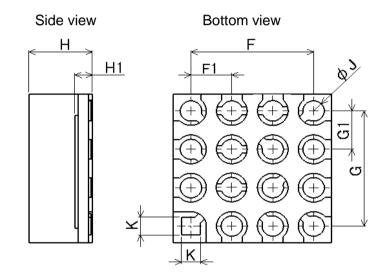
29 / 36 Rev1.1 Nov./28/2025

PIN CONFIGURATION

Pin	Symbol	Туре	Description
A1	INT	Output, CMOS	Interrupt or Data Ready
			Selectable push-pull / open-drain
			open-drain state is implemented pull-up*
A2	(CSB)	(Input, CMOS)	(chip Select)
A3	SCL	Input, CMOS	I2C Serial Clock (SCL)
A4	SDA	Input/Output	I2C Serial Data (SDA)
B1	TEST	-	Factory use only
			Recommend GND connect
B2	NC	-	Non connect
			Connect GND or Floating is OK.
B3	TEST	-	Factory use only
			Recommend GND connect
B4	SA0	Input/Output, CMOS	I2C Slave Address
C1	GND	Power	Ground
C2	NC	-	Non connect
			Connect GND or Floating is OK.
C3	TRG	Input, CMOS	External Trigger
			Recommend GND connect
C4	AVDD	Power	Power supply
D1	TEST	-	Factory use only
			Only Floating
D2	NC	-	Non connect
			Connect GND or Floating is OK.
D3	NC	-	Non connect
			Connect GND or Floating is OK.
D4	VDDIO	Power	Power supply for I/O

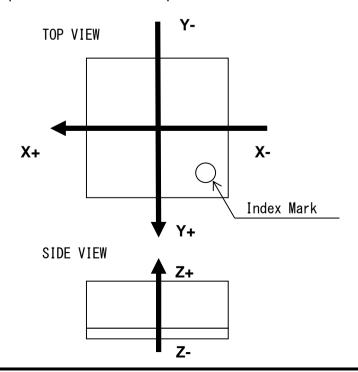
Bottom view




HSCDTD015A

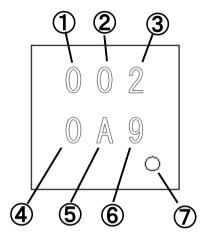
30 / 36 Rev1.1 Nov./28/2025

PACKAGE DIMENSIONS

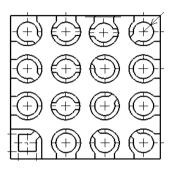

D	imension in m	nillimeters	unit: mm		
Ref	Min.	Nom.	Max.		
E1	1.50	1.55	1.60		
E2	1.50	1.55	1.60		
F	1.15	1.2	1.25		
F1	0.35	0.4	0.45		
G	1.15	1.2	1.25		
G1	0.35	0.4	0.45		
Н	0.6	0.62	0.64		
H1	0.13	0.16	0.19		
J	0.185	0.21	0.235		
K	0.161	0.186	0.211		

PACKAGE DIRECTIONS

- X, Y, Z presents measurement directions of 3 axis sensor.
- Output value of each axis is positive when turned toward magnetic north.



Marking Specifications


Front

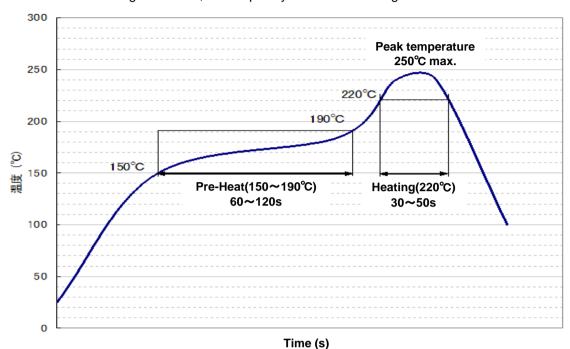
top view

Back side

Bottom view

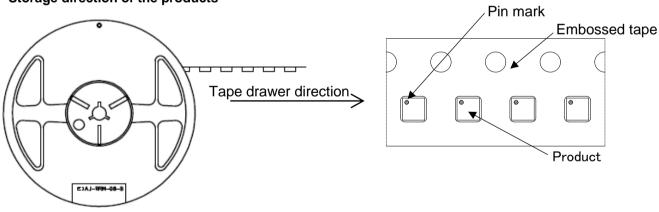
No.	Item	Indication content
1) - 4)	PWB No.	0 - 9, A - Z
5	Production month	1 - 9, A, B, C
6	Production site	9
7	1 Pin mark	

ALPS/ILPINE

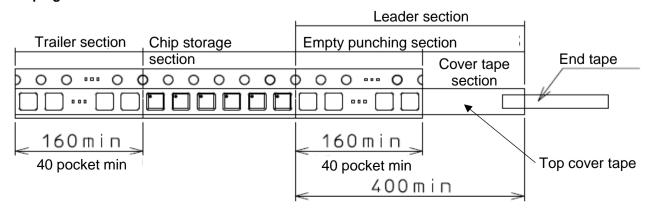

Geomagnetic Sensor

HSCDTD015A

32 / 36 Rev1.1 Nov./28/2025


RECOMMENDED SOLDERING CONDITIONS

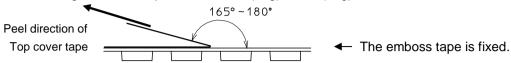
- -The N₂ reflow is acceptable.
- -Under the following conditions, the frequency of reflow soldering should be within two times.



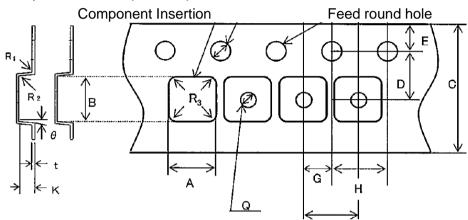
REEL AND TAPE

Storage direction of the products

Taping

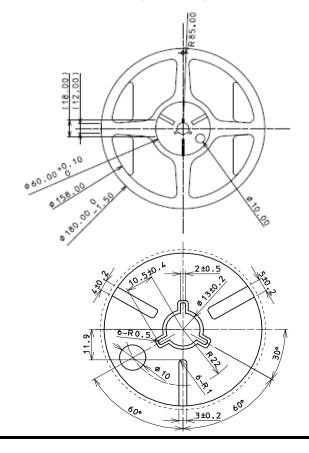

HSCDTD015A

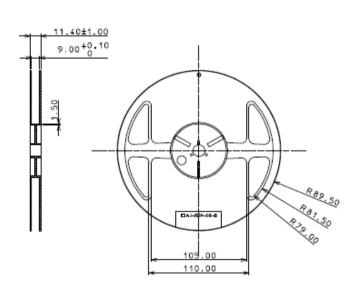
33 / 36 Rev1.1 Nov./28/2025


REEL AND TAPE (Continued)

Peel strength

- Peel strength of cover tape shall be 0.1N(10g) ~ 0.7N(70g) for 300mm/min.

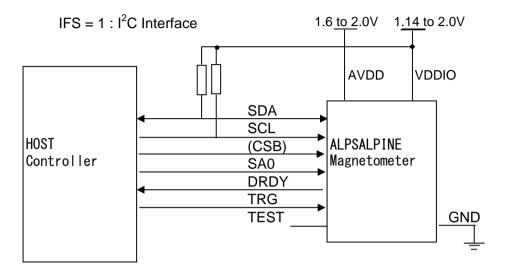

Emboss Tape Dimensions (Unit mm)



Symbol	Α	В	С	D	E	F	G	Н	J	К	Q	t
Dimension	1.9±0.1	1,9±0.1	8.0±0.2	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.05	4.0±0.1	1.5 ^{+0.1}	0.75±0.05	0.50±0.05	0.20±0.05

R ₁	R ₂	R₃	θ
0.3MAX	0.3MAX	0.3MAX	3° MAX

Reel Dimensions (Unit: mm)

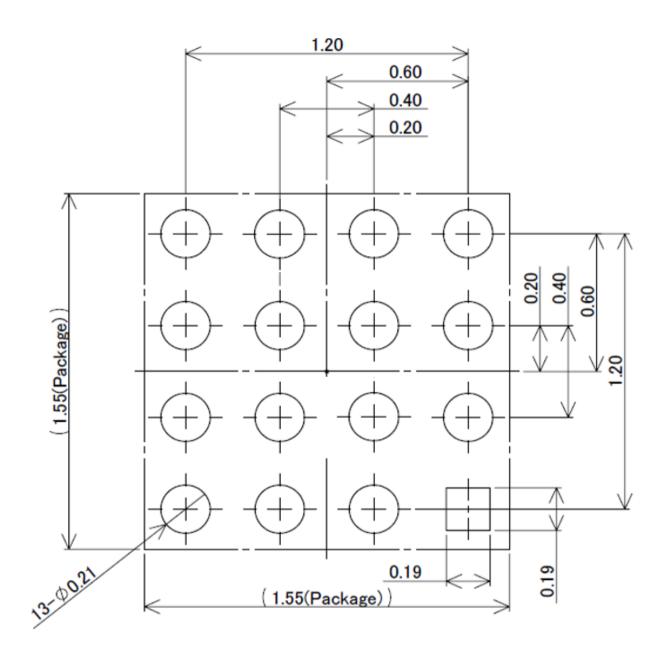


HSCDTD015A

34 / 36 Rev1.1 Nov./28/2025

CONNECTION EXAMPLE

I2C Interface connection block diagram



HSCDTD015A

35 / 36 Rev1.1 Nov./28/2025

RECOMMENDED LAND PATTERN

HSCDTD015A

36 / 36 Rev1.1 Nov./28/2025

Asking that exports this product

- For the export of products which are controlled items subject to foreign and domestic export laws and regulations, you must obtain approval and/or follow the formalities of such laws and regulations.
- 2. Products must not be used for military and/or antisocial purposes such as terrorism, and shall not be supplied to any party intending to use the products for such purposes.
- 3. Unless provided otherwise, the products have been designed and manufactured for application to equipment and devices which are sold to end-users in the market, such as AV (audio visual) equipment, home electric equipment, office and commercial electronic equipment, information and communication equipment or amusement equipment. The products are not intended for use in, and must not be used for, any application of nuclear equipment, driving control equipment for aerospace or any other unauthorized use.

With the exception of the above mentioned banned applications, for applications involving high levels of safety and liability such as medical equipment, burglar alarm equipment, disaster prevention equipment and undersea equipment, please contact an Alps Alpine sales representative and/or evaluate the total system on the applicability. Also, implement a fail-safe design, protection circuit, redundant circuit, malfunction protection and/or fire protection into the complete system for safety and reliability of the total system.

4. Before using products which were not specifically designed for use in automotive applications, please contact an Alps Alpine sales representative.